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Probability Distribution Connected with Structure Ampli tudes  of Two Related 
Crystals. I. Probability Distribution of the Difference 
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The paper deals with the probability distribution of the differences in structure amplitudes of two 
crystals, containing N atoms and P atoms respectively (P < N). Two cases are considered: (a) When 
P forms a part of N and (b) when the two sets of atoms are entirely independent. Both centro- 
symmetric and non-centrosymmetric cases are discussed. Based on these, a method is proposed for 
testing the isomorphism of two crystals, purely from their intensity data. A new method of deter- 
mining the relative scale factor for the data from two isomorphous crystals also follows from the 
results of this paper. 

1. Introduction 

This paper  deals with the problem of the probabi l i ty  
dis t r ibut ion of the structure ampli tudes  of two crys- 
tals. We shall  be concerned essential ly wi th  deriving 
expressions for the d is t r ibut ion of the difference in 
s tructure ampl i tudes  of two crystals both when they  
are related to and  independent  of each other. The 
results thus obtained lead to a criterion for testing, 
in any  pract ical  case, the isomorphism of two crystals. 

I t  m a y  be of interest  to ment ion  how the present 
problem came to be considered. I t  was suggested by  
R a m a c h a n d r a n  & Srinivasan (1960) tha t  the direct 
p robabi l i ty  d is t r ibut ion function, P(y), would form a 
good basis for a test  for f inding the presence or 
absence of a centre of s y m m e t r y  in a crystal  and is 
probably  bet ter  t han  the cumulat ive  function, N(z), 
of Howells, Phi l l ips  & Rogers (1950), because of the 
essential  d iss imilar i ty  in the nature  of the curves for 
the two cases wi th  this  function. These results were 
tested out more ful ly  la ter  (Srinivasan, 1960), where 
the effect of the presence of a small  number  of heavy  
atoms in  the structure on the dis t r ibut ion P(y) was 
also considered. During these studies it  was noticed 
tha t  the presence of a few heavy  atoms in the s tructure 
invar iab ly  tended par t ly  to destroy the diss imilar i ty  
of the ideal P(y) curves. I t  was suggested to the authors 
tha t  i t  would probably  be worthwhile working out the 
dis t r ibut ion funct ion for the structure ampl i tude  with 
the heavy  a tom contr ibut ion removed, tha t  is, to 
f ind the dis t r ibut ion of ([F.~[-[FH[) where the 
subscripts N and  H refer to the entire structure 
consisting of N atoms, and the heavy  atoms alone, 
respectively.* In  practice it  should be possible to 
compute this since the heavy atom position can often 

* This suggestion arose as a result of the discussions in 
a small symposium arranged at Madras in which Prof. A. J. C. 
Wilson took part. The authors are grateful to Prof. 
S. Ramaseshan for pointing out to them this interesting 
possibility. 

be determined with ease at  the beginning of a structure 
analysis.  However, we can t rea t  the  problem in i ts  
more general form, namely,  to consider the distr ibu- 
t ion of ( [F~] - ]Fp [ )  where P now refers to a group 
of P known atoms, which form a par t  of the whole 
structure.  The t r ea tment  of this  s i tuat ion is fa i r ly  
straightforward,  bu t  i t  tu rned  out tha t  the removal  
of the known par t  IFP[ from the structure ampl i tude  
I FNI does not in any  way enhance the diss imi lar i ty  
of the two original distr ibutions,  bu t  in fact  affects 
them adversely. Hence, as a s tat is t ical  test, this  does 
not improve the si tuation.  However, the s tudy  led 
to a number  of other interest ing results. Thus, the 
q u a n t i t y  ( [ F N [ - - [ F p [ )  can equal ly  well be t aken  to 
represent the difference in the structure ampl i tudes  
of two ideal ly  isomorphous crystals (see section 3). 
In  fact, by  viewing the problem in this  manner ,  the 
authors were also led to consider another  si tuation,  
namely  one in which 1V and  P are completely in- 
dependent.  

The various formulae are derived in the nex t  section 
and section 3 contains a discussion of the results and 
their  possible applications.  

2. Derivat ion of the formulae  

Consider a s tructure containing 1Y atoms, P of which 
are assumed to be known (~Y=P+@). Let  us aho  
assume tha t  the group P contains a sufficiently large 
number  of atoms so tha t  the d is t r ibut ion of ]Fp[ 
(and therefore tha t  of [Fu[ also) would follow the 
ideal centrosymmetr ie  or the non-centrosymmetr ic  
one, as the case m a y  be. We first  observe that ,  in the 
equat ion 

Flv=Fp+ FQ , (1) 

the quanti t ies  tha t  are avai lable  are [F~v[ and Fp.  
Denot ing for convenience ( ]F~] - IFPI )  by  A, the 
dis t r ibut ion for d can be worked out using the 
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following general theorem in probability. If z=  x +  y, 
where x, y and z are random variables, then 

P(z) = f Pl(x)P~[(z-x); x]dx , (2) 

where Pl(x) is the probabili ty distribution function 
for the variable x and P~(y; x) is the conditional 
probabil i ty tha t  y lies between y and y+dy given 
the value x for the first variable. The limits of inte- 
gration are determined by the appropriate domain 
in which the function P~ (x) is defined. Equation (2) 
can also be writ ten in its other equivalent form by 
interchanging the roles of x and y. When the variables 
x and y are independent, P2(y; x) equals P2(y) for 
all values of y, so tha t  equation (2) reduces to the 
well known convolution integral. I t  is clear that ,  in 
our problem, the two variables ]F=I and ]F~ I are not 
independent and equation (2) is to be applied in its 
original form. We shall refer to this case, in which 
IF=I and IFvl are not independent, as the case of 
'related structure amplitudes' ,  since later we shall 
be dealing with the case when they  are independent, 
which will be called the 'unrelated case'. 

2-1. Case of related structure amplitudes 
(a) 1Yon-centrosymmetric case.~Since the variable 

we are interested in is A = ( [F=I -  IFPI), we have from 
equation (2) 

P ( A ) =  IP~(IFp])P2[(A+]FpI); ]F~IJdIF~] . (3) 

where P2(IFNI; [FPI) is the conditional probabili ty 
of having a value IF=I given [FPt. When the structure 
is non-centrosymmetric, it can be shown tha t  (see 
e.g. Sim, 1958) 

P2(IF.~I; lFvl)= 

The function Px(IFPI) is given by (Srinivasan, 1960) 

2IFpI e x p { - I F P I 2 [  Px(IFPI)- a~, - - ~ e  I " (5) 

Here a~ and a~ are the mean square values of the 
structure amplitudes [Fp I and [FQI and Io(x) is the 
Bessel function of imaginary argument. I t  is clear 
tha t  A can have any value between - ~  and +0% 
though both P~(IFP[) and P2(IFN[) exist only in the 
range 0 to oo. Accordingly the lower limit of integra- 
tion in (3) becomes 0 for A > 0  and ]A[ for d < 0 .  
We therefore have 

--2~- IFpI(A+I.FP[) P(A) = a ~ e x p  aQ 0orlA] 

ap GQ 

× Io [2IFPI (A + IFPI) 
a~ I dlF~l " (6) 

I t  is convenient to work out the results in terms 
of the normalized variable w =  A/a=, since the final 
expressions take simple forms in terms of this quant i ty . ,  
Similarly, define 

a2 ~--- 2 o . , aQ/as, with a~+a~ = 1.  (7) 

The distribution for w then takes the form: 

foo 2 w e pe_Plo(p ) P(w) = a--~ exp - a--~ 0 

x exp - dx; w 

2 w z pe_Vlo (P) P(w) = a~ e x p -  a~ lwl 

where 
x=lFPl /a= 

and 
p =  2x(w + x)/ a~ . 

>0 (8a) 

w < 0  (8b) 

(9a) 

(9b) 

The above expression is easy to work out since tables 
of e-Plo(p) are available. The function P(w) has 
been evaluated by numerically integrating equation 
(8) for various values of a~. The results are given in 
Fig. 1. 

(b ) Centrosymmetric case 
When the structure is centrosymmetric, we have 

(Srinivasan, 1960) 
2 ½ IFpI2[ 

and 
1 

P2(IFNI; IFPI)= g(2zu~ ) 

× 

(11) 
Substituting these in (3), we get 

S ( { - -~-1  - -  e x p  ~ /  exp P ( A ) =  
o or I"tl apaQyl 

+ exp{-- (A+ 21Fpl)2[1 2~r~ jjdlFPl. (12) 

The integral (12) is expressible in terms of error func- 
tions. As before, substituting w =  A/aN we get 

P(w) = 
exp ( - w2/2 a~) exp ( - -  W2/2 G ' 2 )  

× [ 1-erf~-~2(2')alwl' w > 0 a  a2 3 (13a) 
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exp (-- w2!2a~) lwl 

exp ( -- w2/2 a '2) [ ~ 2 (~+2o~)w] 
+ ]/(2ze(;,2 ) 1--erf ~/(2)(rl(r2(r'J ' w < 0  

(13b) 
where 

2 e-t2dt. (14) a '~=a2+4a~ and err (x )=  ~ 0 

The nature of the function P(w) for different values 
of a~ may be seen from Fig. 2. 

2.2. The case of unrelated structure amplitudes 
Let us now consider the situation when N and P 

are completely independent of each other. Equation 
(3) then reduces to 

I PI(]FPI)P2(A+IFP])d]Fp]" (15) P(A) 

(a) Non-centrosymmetric case.--When the structure 
is non-centrosymmetric, P1 (]FP]) is given by equation 
(5) and 

2[FN] { [F~v[2[ 
(16) 

Substituting equations (5) and (16) in equation (15), 
we obtain 

P(A)  = L2v2-~_2 
°'P O".N o 

IFP[(A+[FPI) 

I IF~121 I (A+IFPI) 2 x oxpl- 4  °xPl- 1 

This is expressible in terms of incomplete gamma 
functions. As before, substituting w= A/(;lv we get 

2ol k~w2 ; ½)] 

(1 -  e~) w [1 ./k~w2 \ l  

V(ZT'g)W2 [ ,  .,- / , ~  k2W 2 i~7~ 

with 
/c~=(;~ for w>0,  k2=l /a~ for w < 0 ,  (lSa) 

Z2= ~ +  1, (lSb) 

and I(x; p) is the incomplete gamma function (Pear- 
son, 1922) defined by 

f 
xV(p-t-1) 

I(x; p) = e-ttvdt/I'(p+ 1). (19) 
¢0 

From a practical point of view, only the cases when 
(r~ is nearly equal to unity will be of interest to us 
(see section 3) and therefore calculations were per- 
formed only in this region and the results are given 
in Fig. 3 for a~ = 0-8 and a~ = 1.0. 

(b) Centrosymmetric case.--For this case, P~([FPI) 
is given by equation (10) and 

2 t iF~vl2~ P2(,F~I) = ( ~ j ~ . ) e x p ( -  (20) 

P(w) now takes the forms 

~ GlW 7 
x 1--er~ _~j; w>0 (21a) 

[ x 1 - e r f ~ - ~ 2 j ,  w < 0  (21b) 

where the notations are the same as above. The 
distribution functions for this non-centrosymmetric 
unrelated case are given also for a~=0.8 and a~= 1 
in Fig. 4. 

3. D i s c u s s i o n  

Considering first Figs. 1 and 2, which give the prob- 
ability distribution function P(w) for the difference 
in structure amplitudes of two related crystals, it will 

1.5- 

--1"0 --0"5 0 0"5 1"0 1"5 2"0 2"5 

m W  

Fig. 1. Probab i l i t y  d is t r ibut ion funct ion P(w) for the 
related non-eentrosymmetr ic ease, corresponding to cr12= 
0(1); 0.2(2); 0.4(3); 0.6(4); 0.8(5); 1.0(6). 
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1.5 

v o,, 

-2:0 -1.5 -1.0 -0-5 0 

"1 "0 

0"5 1"0 1"5 2"0 2"5 3"0 
D W 

Fig. 2. Probabi l i ty  dis t r ibut ion func t ion  P(w) for the  re la ted  
cen t rosymmet r i c  case, corresponding to az ~--0(1); 0.2(2); 
0"4(3); 0.6(4); 0"8(5); 1"0(6). 

be noticed tha t  this function corresponds to P(y) 
(i.e. the distribution function for the normalized 
structure amplitude for a single crystal with Iv" atoms) 
when a~=0. Obviously, P(y)=O for negative values 
of y. As a~ increases, the function P(w) develops 
more and more on the negative side, and in the limit, 
when a~= 1, it  becomes a delta function, which is 
completely symmetric about w=O. This general 
behaviour is similar both for centrosymmetric and 
non-centrosymmetric crystals. However, there is a 
discontinuity in the derivative of the function P(w) 
at the origin in the centrosymmetrie case, although 
the function itself is continuous (Fig. 2). 

A comparison of Figs. 1 and 2 shows that ,  for a 
particular value of ~ ,  the curve is sharper for the 
non-centrosymmetric than  for the centrosymmetric 
case. However, in both cases, the curves tend to be 
more similar to each other with increasing a~, and for 
this reason, i t  would not be profitable to use the 
function P(w) as a statistical test  for detecting a 
centre of symmetry  in place of the function P(y) 
itself. 

is! 
2"0 v 

Related 

1" 0"9 
l /  / Related 

1"0 

- 2 ' 5  20 15 10  05 0 w 0"5 1"0 1"5 2~0 2"5 3"0 

'5 
Fig. 4. Probabi l i ty  dis t r ibut ion func t ion  .P(w) for the  un- 

re la ted  cen t rosymmet r i e  case. Only the  curves for az2-- - 
0-8 1.0 and  0-8 are  shown. The  corresponding curve  for the  

re la ted  case o12---0-9 is also given for comparison.  

_ _ ~  ~ The curves for a12--1 in Figs. 3 a n d 4  for two un- 
-2.0-1.5-1.0-o.s 0 o.5 1.0 1.5 2.o 2'.5 related crystals are particularly interesting. They 

correspond to the case of two crystal structures, 
Fig. 3. Probabi l i ty  dis t r ibut ion func t ion  P(w) for the  un- both having the same number and types of atoms, 

re la ted  non-cen t rosymmet r i c  case. Only the  curves for 
oz2= 1-0 and  0.8 are  shown. The corresponding curve for b u t  whose coordinates in the two structures are quite 
the related case, a12=0.9 is also given for comparison,  different from one another. I t  is possible to work out 
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the R-values (reliability indices) for these cases from 
the curves for P(w). It  is readily seen that  

R = _rIIF~) I -)F(~)II/XIF~ 1) = <IAI>/<IF~I> (22a) 

= < lw l>~ ,v /< lFN]>=<lw i> /< l y l>  (225) 

where we have used F~) and F(~ ) to represent the 
structure amplitudes of the two crystals (correspond- 
ing to FN and Fp, used earlier). The quantities 
<[wl> and <]y[> can be readily obtained from the 
distribution functions P(w) and P(y), and this was 
done both for the centrosymmetric and non-centro- 
symmetric cases. These gave the values 

R u n r e l  --csR'Unrel 0 " 8 2 8 ,  - - n c s  = 0-586, 

which agree perfectly with the R-values given by 
Wilson (1950), for a proposed structure which is 
completely wrong. On the other hand, we have been 
able to obtain the actual distribution function for the 
differences in structure amplitude in these cases. 

Figs. 3 and 4 also contain for comparison the 
distribution function for the related case, for a~ = 0.9. 
I t  will be seen that  the curve is much sharper in the 
related case, compared with the unrelated case. The 
distribution function P(w), therefore, provides a good 
criterion for testing the isomorphism of two structures. 
This is possible because, when P forms a part of 2V, 
it corresponds to the case of two isomorphous crystals 
with P and 2/ atoms respectively. 

So also, we can calculate the probable fraction of 
reflections (say P+) for which [FN[ > IFp[ by finding 
the integral 

P+ = (w)dw . (23) 

The variation of P+ with (r~ is shown both for centro- 
symmetric as well as non-centrosymmetric crystals in 
Fig. 5. Obviously, in both cases, P+=0.5 for a~=l  
and P+ = 1 for a~ = 0. The value of P+ for any partic- 
ular value of a~ can be used for finding the relative 
scale factor of two isomorphous crystal, for only 
when the relative scaling is correct would the fraction 
of reflections for which IF~I is greater than IFp] be 

. - .  a R e l a t e d  N C S  

a b R e l a t e d  CS 

o.+ 

0"5 

0 L . , i I I I i i 1 I 
0 0"5 1-0 

Fig. 5. Variation of P+, the probable fraction of reflections 
for which IFlvI>[FpI with u12, for the related case. 
(a) Non-centrosymmetric, (b) cent rosymmetric. 

equal to the theoretical value. The applications of 
the results of this paper to isomorphous crystals will 
be considered in detail in another paper, along with 
examples. 

Finally it might be mentioned that, in addition to 
the case of isomorphous crystals, the results obtained 
above might also prove useful in studies where 
structural similarity is involved, as for instance in 
problems connected with phase transitions and order- 
disorder structures. We may sometimes meet with a 
family of compounds with a gradation in their 
similarities, e.g., the feldspar compounds. Such cases 
will also be considered later. 
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