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Probability Distribution Connected with Structure Amplitudes of Two Related
Crystals. I. Probability Distribution of the Difference
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The paper deals with the probability distribution of the differences in structure amplitudes of two
crystals, containing N atoms and P atoms respectively (P < N). Two cases are considered: () When
P forms a part of N and (b) when the two sets of atoms are entirely independent. Both centro-
symmetric and non-centrosymmetric cases are discussed. Based on these, a method is proposed for
testing the isomorphism of two crystals, purely from their intensity data. A new method of deter-
mining the relative scale factor for the data from two isomorphous crystals also follows from the

results of this paper.

1. Introduction

This paper deals with the problem of the probability
distribution of the structure amplitudes of two crys-
tals. We shall be concerned essentially with deriving
expressions for the distribution of the difference in
structure amplitudes of two crystals both when they
are related to and independent of each other. The
results thus obtained lead to a criterion for testing,
in any practical case, the isomorphism of two crystals.

It may be of interest to mention how the present
problem came to be considered. It was suggested by
Ramachandran & Srinivasan (1960) that the direct
probability distribution function, P(y), would form a
good basis for a test for finding the presence or
absence of a centre of symmetry in a crystal and is
probably better than the cumulative function, N(z),
of Howells, Phillips & Rogers (1950), because of the
essential dissimilarity in the nature of the curves for
the two cases with this function. These results were
tested out more fully later (Srinivasan, 1960), where
the effect of the presence of a small number of heavy
atoms in the structure on the distribution P(y) was
also considered. During these studies it was noticed
that the presence of a few heavy atoms in the structure
invariably tended partly to destroy the dissimilarity
of the ideal P(y) curves. It was suggested to the authors
that it would probably be worthwhile working out the
distribution function for the structure amplitude with
the heavy atom contribution removed, that is, to
find the distribution of (|Fn|—|Fx|) where the
subscripts N and H refer to the entire structure
consisting of N atoms, and the heavy atoms alone,
respectively.* In practice it should be possible to
compute this since the heavy atom position can often

* This suggestion arose as a result of the discussions in
a small symposium arranged at Madras in which Prof. A. J. C.
Wilson took part. The authors are grateful to Prof.
S. Ramaseshan for pointing out to them this interesting
possibility.

be determined with ease at the beginning of a structure
analysis. However, we can treat the problem in its
more general form, namely, to consider the distribu-
tion of (|Fy|—|Fp|) where P now refers to a group
of P known atoms, which form a part of the whole
structure. The treatment of this situation is fairly
straightforward, but it turned out that the removal
of the known part [Fp| from the structure amplitude
|Fy| does not in any way enhance the dissimilarity
of the two original distributions, but in fact affects
them adversely. Hence, as a statistical test, this does
not improve the situation. However, the study led
to a number of other interesting results. Thus, the
quantity (|[Fn|—|Fp|) can equally well be taken to
represent the difference in the structure amplitudes
of two ideally isomorphous crystals (see section 3).
In fact, by viewing the problem in this manner, the
authors were also led to consider another situation,
namely one in which N and P are completely in-
dependent.

The various formulae are derived in the next section
and section 3 contains a discussion of the results and
their possible applications.

2. Derivation of the formulae

Consider a structure containing N atoms, P of which
are assumed to be known (N=P+@). Let us also
assume that the group P contains a sufficiently large
number of atoms so that the distribution of |Fp|
(and therefore that of |Fu| also) would follow the
ideal centrosymmetric or the non-centrosymmetric
one, as the case may be. We first observe that, in the
equation

Fn=Fp+Fq, (1

the quantities that are available are |[Fy| and Fp.
Denoting for convenience (|Fy|—|Fe|) by 4, the
distribution for A can be worked out using the
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following general theorem in probability. If z=x+y,
where z, y and z are random variables, then

P(z) = SP1(z)P2[(z—x); zldx , (2)

where Pi(x) is the probability distribution function
for the variable z and P:(y; x) is the conditional
probability that y lies between y and y+dy given
the value z for the first variable. The limits of inte-
gration are determined by the appropriate domain
in which the function P;(z) is defined. Equation (2)
can also be written in its other equivalent form by
interchanging the roles of 2 and y. When the variables
z and y are independent, P:(y; z) equals Pa(y) for
all values of y, so that equation (2) reduces to the
well known convolution integral. It is clear that, in
our problem, the two variables |Fx| and |Fp| are not
independent and equation (2) is to be applied in its
original form. We shall refer to this case, in which
|Fy| and |Fp| are not independent, as the case of
‘related structure amplitudes’, since later we shall
be dealing with the case when they are independent,
which will be called the ‘unrelated case’.

2-1. Case of related structure amplitudes
(@) Non-centrosymmetric case.—Since the variable

we are interested in is 4= (|Fn|—|Fp|), we have from
equation (2)

P(4) = SPl(IFPl)Pz[(AHFPI); |FeJd|Fp|. (3)

where Ps(|Fn|; |[Fp|) is the conditional probability
of having a value |Fy| given |Fp|. When the structure
is non-centrosymmetric, it can be shown that (see
e.g. Sim, 1958)

Py(|Fn|; |Fp|) =
2|F Fyi2+|Fp|2 2|Fn||F

| 2Nlexp{_l wl -*;I P]}IO< l lel Pl>' @)

Gq 0q 9q
The function Pi(|Fp|) is given by (Srinivasan, 1960)

2|F Fp|2
Py(|Fp)) = —'2—’4 exp{- '—’2’—'} . ().

Op op

Here ¢% and o} are the mean square values of the
structure amplitudes [Fp| and |Fgq| and Io(z) is the
Bessel function of imaginary argument. It is clear
that 4 can have any value between —oc and +oo,
though both P;(|Fp|) and Pz (|Fn|) exist only in the
range 0 to co. Accordingly the lower limit of integra-
tion in (3) becomes 0 for 4>0 and |4} for 4<0.
We therefore have

A Az 00
0p0qQ 0QJ) doory4i
et (e oh) + 2ob A1)

xexp{ s
2|Fp|(A4+|F
xlg( |Fel( 2+IL|)
Gq

L

]din; . (6)
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It is convenient to work out the results in terms
of the normalized variable w=A/oy, since the final
expressions take simple forms in terms of this quantity. .
Similarly, define

or=0%/c%; oy=o0%y/c%, with oj+ot=1. (7)

The distribution for w then takes the form:

2 PCO

2 w
P(u) = = exp ‘ESO peIo(p)

2
xexp(—%)dx; w>0 (8a)

1

2 wz OO
Pw) = — ex ———S e~ P],
(w) o2 OXP ~ 3 iwlp o(p)
xz
xexp(——2> dr; w<0 (8b)
01
where
x=|Fp|/on (9a)
and
p=2x(w+z)/ok . (9b)

The above expression is easy to work out since tables
of e PIo(p) are available. The function P(w) has
been evaluated by numerically integrating equation
(8) for various values of of. The results are given in
Fig. 1.

(b) Centrosymmetric case

When the structure is centrosymmetric, we have
(Srinivasan, 1960)

=l esl-g}

Pe(|Fx|; |Fp|) = Walz_a%{)

X [exp{—ﬂF“’]z—;zQIFi)z} +exp{_ L]Fig_zzl_pli)z” .
(11)

Substituting these in (3), we get

1 Pl &
Pl = 500”41 OTP_C;Q‘TCeXP(— 20,_,}))[6){}){—206}
(A+2|Fp|)?

+exp{——-—2gp—

Hairsl . a2

The integral (12) is expressible in terms of error funec-
tions. As before, substituting w=A/onx we get

_exp (—w?203)  exp (—w?/20")
PO = aay V@)

X [l—erf&)ﬂ], w>0
o o2

(13a)

’
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_exp(=w2ady, . |u|
P(w) = V@mad) {1 erf V(2)‘71]
exp (—w?/20"2) (624208 w
—erf —————"— 0
V(27IO"2) [ er V(2)O’10’20":I w< (l3b)
where

207,
02=0%+40% and erf (z) = ——S e Fdt . (14)
V7 do
The nature of the function P(w) for different values
of o} may be seen from Fig. 2.

2:2. The case of unrelated structure amplitudes
Let us now consider the situation when N and P
are completely independent of each other. Equation
(3) then reduces to
P(d) = S Pi(Fe)) Pa(A+|Fp)d)Fs|. (1)
(a) Non-centrosymmetric case.—When the structure

is non-centrosymmetric, P1 (| ¥ p|) is given by equation
(5) and

2|F
Po(|Fl) = %exp{—

N

%}P}_

N

(16)

Substituting equations (5) and (18) in equation (15),
we obtain

4 [oo]
P(A) = | IFrl(4+1Fe)
X exp { - ———IF;;;P} exp{ (A Felpe +0]11:P| }dIF [

This is expressible in terms of incomplete gamma
functions. As before, substituting w=/A/on we get

o1~ - )22
+Ci-1(5 )]
SHE (2 B ) o
with
k2=o% for w>0, k2=1/02 for w<0, (18a)
=gl (185)

and I(x; p) is the incomplete gamma function (Pear-
son, 1922) defined by

Zy (p+1)

I(e; p) = S etedT(p+1).  (19)

0
From a practical point of view, only the cases when
0% is nearly equal to unity will be of interest to us
(see section 3) and therefore calculations were per-
formed only in this region and the results are given
in Fig. 3 for 02=0-8 and ¢?=1-0.

(b) Centrosymmetric case.—For this case, P)(|Fp])
is given by equation (10) and
2 \# |F |2 ,

PuFx) = () exp( =) . o

P(w) now takes the forms

Pw) = (;22—2)% (exp — %)

x[l—erfLw]; w>0 (2la)

g22)/2
é w?
P = () (o0 - 533)
oW
_ Il 2
X [1 erf012V2J, w< 0 (21d)

where the notations are the same as above. The
distribution functions for this non-centrosymmetric
unrelated case are given also for ¢2=0-8 and ¢3=1
in Fig. 4.

3. Discussion

Considering first Figs. 1 and 2, which give the prob-
ability distribution function P(w) for the difference
in structure amplitudes of two related crystals, it will

1
—10 —05 0 05 1-0 15 20 25
—_— W

Fig. 1. Probability distribution function P(w) for the
related non-centrosymmetric case, corresponding to ¢,2=
0(1); 0-2(2); 0-4(3); 0-6(4); 0-8(5); 1-0(6).
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Fig. 2. Probability distribution function P(w) for the related
centrosymimetric case, corresponding to ¢,2=0(1); 0-2(2);
0-4(3); 0-6(4); 0-8(5); 1-0(6).
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Fig. 3. Probability distribution function P(w) for the un-
related non-centrosymmetric case. Only the curves for
0,2=1-0 and 0-8 are shown. The corresponding curve for
the related case, 0,2=0-9 is also given for comparison.
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be noticed that this function corresponds to P(y)
(v.e. the distribution function for the normalized
structure amplitude for a single crystal with N atoms)
when ¢=0. Obviously, P(y)=0 for negative values
of y. As o} increases, the function P(w) develops
more and more on the negative side, and in the limit,
when o2=1, it becomes a delta function, which is
completely symmetric about w=0. This general
behaviour is similar both for centrosymmetric and
non-centrosymmetric crystals. However, there is a
discontinuity in the derivative of the function P(w)
at the origin in the centrosymmetric case, although
the function itself is continuous (Fig. 2).

A comparison of Figs.1 and 2 shows that, for a
particular value of of, the curve is sharper for the
non-centrosymmetric than for the centrosymmetric
case. However, in both cases, the curves tend to be
more similar to each other with increasing o%, and for
this reason, it would not be profitable to use the
function P(w) as a statistical test for detecting a
centre of symmetry in place of the function P(y)
itself.

<23-20-15-10-05 0 05 10 15 20 25 39

—

Fig. 4. Probability distribution function P(w) for the un-
related centrosymmetric case. Only the curves for o¢,2=
1-0 and 0-8 are shown. The correspondmg curve for the
related case 0,2=0-9 is also given for comparison.

The curves for o3=1 in Figs. 3 and 4 for two un-
related crystals are particularly interesting. They
correspond to the case of two crystal structures,
both having the same number and types of atoms,
but whose coordinates in the two structures are quite
different from one another. It is possible to work out
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the R-values (reliability indices) for these cases from
the curves for P(w). It is readily seen that

R = Z|FP|—|FPI||Z\FP = (A1) Fxly (220)
= (lwon/<IF Ny ={lw]>/{lyl)

where we have used F{ and F® to represent the
structure amplitudes of the two crystals (correspond-
ing to Fy and Fp, used earlier). The quantities
{lwl) and {|y|> can be readily obtained from the
distribution functions P(w) and P(y), and this was
done both for the centrosymmetric and non-centro-
symmetric cases. These gave the values

(225)

Rl = 0-828, Rl = 0586 ,

which agree perfectly with the R-values given by
Wilson (1950), for a proposed structure which is
completely wrong. On the other hand, we have been
able to obtain the actual distribution function for the
differences in structure amplitude in these cases.

Figs.3 and 4 also contain for comparison the
distribution function for the related case, for ¢§=0-9.
Tt will be seen that the curve is much sharper in the
related case, compared with the unrelated case. The
distribution function P(w), therefore, provides a good
criterion for testing the isomorphism of two structures.
This is possible because, when P forms a part of WV,
it corresponds to the case of two isomorphous crystals
with P and N atoms respectively.

So also, we can calculate the probable fraction of
reflections (say P.) for which |Fy|>|Fp| by finding
the integral

loo]
P, =S P(w)dw . 23)
0
The variation of P, with ¢? is shown both for centro-
symmetric as well as non-centrosymmetric crystals in
Fig. 5. Obviously, in both cases, P,=0-5 for ¢?=1
and P.=1 for ¢2=0. The value of P, for any partic-
ular value of o} can be used for finding the relative
scale factor of two isomorphous crystal, for only
when the relative scaling is correct would the fraction
of reflections for which |Fy| is greater than [Fp| be

10
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Fig. 5. Variation of P, the probable fraction of reflections
for which |Fy|>|Fp| with 6,%, for the related case.
(a) Non-centrosymmetrice, (b) centrosymmetrie,

equal to the theoretical value. The applications of
the results of this paper to isomorphous crystals will
be considered in detail in another paper, along with
examples. .

Finally it might be mentioned that, in addition to
the case of isomorphous crystals, the results obtained
above might also prove useful in studies where
structural similarity is involved, as for instance in
problems connected with phase transitions and order—
disorder structures. We may sometimes meet with a
family of compounds with a gradation in their
similarities, e.g., the feldspar compounds. Such cases
will also be considered later.
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